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Abstract A quantitative structure–activity relationship
study with respect to selectivity for a1 adrenoreceptor
subtypes (a1a, a1b and a1d) of a wide series of structurally
heterogeneous a1 adrenoreceptor antagonists has been
performed. A large variety of molecular descriptors have
been calculated and then analyzed by a heuristic method.
The orthogonalization of the descriptors has been applied
to build the QSAR equations. Ad hoc defined shape
descriptors calculated by the Connolly algorithm with
respect to reference supermolecules have also been
considered in the rationalization of the mechanism of
the activity of the ligands acting as antagonists on all
three subtypes of a1 adrenoreceptors.

Keywords QSAR · a1 adrenergic antagonists · Molecular
descriptors

Introduction

The a1 adrenergic receptors (a1 AR) are members of the
superfamily of G-protein-coupled receptors (GPCR) that
transduce signals across the cell membrane. Molecular
biology techniques allowed the identification of cDNAs
encoding three a1 adrenoreceptors (a1a, a1b and a1d). The
recombinant a1 adrenoreceptors correlate with the three
a1 adrenoreceptor subtypes that were identified in native
tissues mediating their functional responses (a1A, a1B and
a1D). [1] There is also evidence for an additional a1

adrenoreceptor population, designated as a1L adrenore-
ceptors. [2]

Considerable recent interest in subtypes of a1
adrenoreceptors has resulted from the realization that
differences in the distribution of subtypes of these
receptors between the cardiovascular system and prostate
gland could be of therapeutic importance. For example, a
number of nonsubtype-selective compounds have been
used in the treatment of benign prostate hypertrophy,
although cardiovascular complications of these agents
have been attributed to their equivalent blockade of all a1
adrenoreceptors. [3]

There are many types of chemical structures that have
the ability to act as a1 adrenoreceptor antagonists.
However, for a wide range of chemical structures to
interact at the same receptor, they must possess certain
regions of similar shape and electronic character, which in
the case of a1 adrenergic antagonists have been postulated
as an aromatic region, a basic nitrogen atom with at least
one available protonation site and a semipolar region. [4]
There is also evidence that some of the compounds can
discriminate between discovered a1a, a1b and a1d adre-
noreceptor subtypes, but there are still insufficient com-
pounds available with significant subtype selectivity to be
able to draw definitive conclusions about structure–
activity relationships with regard to their selectivity.
Therefore, to discriminate successfully between subtly
different types of activity represents a challenge for a
quantitative structure–activity relationship study (QSAR).

Recently, a QSAR analysis of a1 adrenoreceptors
based on ad hoc size and shape descriptors, which include
measuring of van der Waals volumes with respect to a
reference supermolecule, has been shown to be a promis-
ing approach to rationalize the different activity and
selectivity of a1 adrenoreceptors. [5, 6]

In order to design selective antagonists, a ligand-based
drug design methodology has also been performed using a
pharmacophore hypothesis to predict the activity of the
compounds. [7, 8, 9, 10] Molecular descriptors in QSAR
of congeneric and noncongeneric a1 adrenergic antago-
nists have also been presented. [11, 12, 13] A variety of
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chemometric tools has been applied to build the QSAR
equations. [14, 15, 16, 17]

Binding affinities of the compounds toward cloned
subtypes have also been estimated, [18] as well as
molecular-dynamic simulations, which allowed a struc-
tural/dynamic analysis of a-helix-bundle models of the a1
adrenoreceptor subtypes in order to rationalize, at a
molecular level, the antagonist selectivity. [19] Approach-
es based on receptor docking and evaluation of small
molecule ligands for selective binding to the a1 adreno-
receptor subtypes have also been used. [20]

In the present work we have investigated the possibil-
ity of generating statistically-based correlative models
between experimentally determined selectivity for a set of
compounds with a wide variety of chemical structures and
theoretical molecular descriptors. A large number of
molecular descriptors have been calculated and then a
heuristic method applied for the choice of the descriptors,
which were analyzed by multilinear regression method
(MLR). Ad hoc defined shape descriptors calculated by
the Connolly algorithm with reference to a supermolecule
modeled for all three subtypes of a1 adrenoreceptors have

also been employed for considering the molecular fea-
tures responsible for selectivity in a series of noncon-
generic antagonists toward a1a, a1b and a1d AR.

Materials and methods

The set (Fig. 1) of 38 a1 adrenergic antagonists [7] showing a large
diversity of chemical structures was used in this study. The
biological data were expressed as activities (�log Ki (nM)) for a1a,
a1b and a1d subtypes and selectivities (�log Ki a1a/a1b, �log Ki a1a/
a1d and �log Ki a1b/a1d). Chemical structures and Ki values (nM) of
all compounds investigated are given in Fig. 1.

The structures were constructed using the Spartan program
package. [21] Complete geometry optimization was performed for
the N1-protonated forms of the compounds investigated taking the
most extended conformations as starting geometries and assuming
all the aromatic rings to be planar. Molecular orbital calculations
(AM1) of the protonated structures were performed using the
MOPAC 6.0 program.

For the superimposition of the molecules with regard to their
selectivity and high activity for the different subtypes, the most
active molecule (abanoquile, compound 3) for all three subtypes of
adrenoreceptors was chosen as the reference compound. Each
compound considered in the subset was superimposed onto
molecule 3 by a fitting procedure that minimized the r.m.s.

Fig. 1 Structures of a1 adren-
ergic antagonists. (Ki values
(nM) for a1a, a1b, a1d AR an-
tagonists, respectively, are giv-
en in parentheses for all com-
pounds)
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deviations of their respective position using three points: the
protonated nitrogen atom, the center of the aromatic region and the
center of the semipolar region, which have been determined
previously. Computations of Connolly surfaces were performed
with respect to a reference supermolecule obtained by superimpo-
sition of molecules in the set. [22, 23, 24]

The calculation of a large number of molecular descriptors was
performed using the CODESSA (Comprehensive Descriptors for
Structural and Statistical Analysis) software as a multipurpose
program for developing quantitative structure–activity or structure–
property relationships. [25]

All descriptors were divided into five groups: constitutional
(reflecting the molecular composition of the compounds), topolog-
ical (describing the atomic connectivity in a molecule), geometric
(calculated from 3D atomic coordinates of the molecule), electro-
static (reflecting characteristics of the charge distribution in the
molecule) and quantum chemical (divided into three groups:

charge-distribution related descriptors, valency related descriptors,
and quantum mechanical energy related descriptors).

For selection of descriptors, we used the heuristic method
implemented in CODESSA, which accomplished a preselection of
descriptors on the basis of their statistical significance. First,
descriptors with missing or constant values for the set of structures
were discarded from the original set. Further selection of descrip-
tors was accomplished on the basis of the statistical parameters: r2,
F-test, and t-test for the one-parameter equations with the descrip-
tors. The default values, which were kept constant throughout the
calculations, were set as follows: r2

min=0.01, r2
max=0.99 and t1=0.1.

After selection of the descriptors, MLR analysis was applied for
developing QSAR models.

For statistical improvement of the models obtained, the Randic
method for orthogonalization of the descriptors was used. [26, 27]
Orthogonal d1–dn were derived from nonorthogonal molecular
descriptors D1–Dn in a stepwise procedure, using D1 as the first
orthogonal descriptor d1. The second orthogonal descriptor d2 was

Fig. 1 (continued)
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constructed as a simple regression between D2 and d1, where d1 is
independent and D2 a dependent variable. New D2(calc) were
calculated and the difference between D2 and D2(calc) is the
residual, which represents our new descriptor d2. This procedure
was performed until all descriptors were orthogonal. Finally, the
MLR method was applied to develop regression models for
orthogonal descriptors.

Results and discussion

It is assumed in general that few molecular determinants
are responsible for the discrimination of the compounds
among receptor classes or subtypes. However, the eluci-
dation of functionalities that contribute to binding is

complicated by the great diversity in size and chemical
structure of the ligands. The availability of descriptors
able to capture the strict ligand–receptor complementarity
criteria is the primary objective for obtaining a good
quantitative rationalization of the binding properties of
highly active and selective ligands.

The focus of the present work was twofold: (a) to
construct good predictive models for selectivity between
all three subtypes and to examine the differences in
molecular descriptors chosen by a heuristic method to be
informative for the subtype selectivity and (b) computa-
tion of the shape descriptors of the compounds with
respect to a reference supermolecule and correlation with

Fig. 1 (continued)
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selectivity for all subtypes was the object of the search as
well.

The results obtained in the work of Menziani et al.
[13] showed that the heuristic method implemented in
CODESSA is a valuable tool for selecting from a large
pool of theoretical molecular descriptors to obtain pow-
erful predictive and interpretative QSAR models.

The selection of the five best descriptors by a heuristic
method for all three subtypes is shown in Table 1. They
are calculated by one-parameter correlations inside each
group of descriptors and sorted by descending value of
correlation coefficient and F-test.

On the basis of the results obtained, it could be
assumed that the following information content about
the structure–selectivity relationship for the a1a/a1b and
a1a/a1d selectivity could be presented in all groups of
the descriptors as follows: r2=0.3292–0.4408 for consti-
tutional, r2=0.2838–0.3550 for topological, r2=0.3872–
0.4401 for geometrical, r2=0.4440–0.4980 for electrostat-

ic and r2=0.2892–0.4562 for quantum chemical descrip-
tors. For the selectivity a1d/a1b, only electrostatic (r2=
0.1147–0.1158) and quantum chemical descriptors (r2=
0.2868–0.3977) were found to be significant.

Searching the one-parameter correlation of molecular
descriptors with the activity (�log Ki) for a1a, a1b and a1d
adrenoreceptor subtypes for the same set of compounds,
it was shown that all groups of descriptors have an
influence on the a1a adrenergic activity (r2=0.1226–0.2180
for constitutional, r2=0.1811–0.1922 for topological, r2=
0.1378–0.1822 for geometrical, r2=0.1911–0.2224 for
electrostatic and r2=0.1746–0.2139 for quantum chemi-
cal descriptors), while for a1b activity (r2=0.0328–0.0797
for constitutional, r2=0.0336–0.0488 for topological, r2=
0.0365–0.0661 for geometrical, r2=0.1611–0.2426 for
electrostatic and r2=0.2348–0.3083 for quantum chemical
descriptors) and a1d activity (r2=0.0.1071–0.1935 for
constitutional, r2=0.1020–0.1149 for topological and r2=
0.0435–0.0755 for geometrical, r2=0.1063–0.1990 for

Fig. 1 (continued)
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electrostatic and r2=0.2379–0.3673 for quantum chemical
descriptors), mostly electrostatic and quantum chemical
descriptors could give the useful information.

The correlation of the five best descriptors of each
group of descriptors (the best descriptor of each group
was chosen) with receptor selectivity was also performed
but the regression coefficients obtained were not found to
be satisfactory (r2=0.5434 for selectivity a1a/a1b, r2=
0.5167 for selectivity a1a/a1d and r2=0.4456 for selectivity
a1b/a1d).

The QSAR equations for all three types of selectivity
were obtained using a heuristic method for the selection
and the first five best descriptors (yielding the best

regression coefficients) were correlated using the MLR
method.

According to the chemical features of the protonated
nitrogen atom at physiological pH (Fig. 1), the a1 AR
antagonists partitioned into training and test set can be
subdivided into several subsets: (a) quinazolinic and
quinolinic, compounds 1–8, (b) aminic, compounds 13,
16, 22, 24, 27 and 35, (c) piperazinic, compounds 15, 18,
25, 29–32, 34 and 37, (d) piperidinic, compounds 9–12,
23, 26, 28, 33 and 36 and (e) a few compounds of
different structures, compounds 14, 19–21 and 38.

The linear QSAR models generated have been vali-
dated by predicting selectivity of test sets containing the

Table 1 Selection of five best
descriptors from each group of
descriptors according to corre-
lation coefficients for one-pa-
rameter correlations with regard
to selectivity on a1a/a1b, a1a/a1d
and a1b/a1d AR subtypes

Selectivity a1a/a1b Selectivity a1a/a1d Selectivity a1b/a1d

r2 F r2 F r2 F

Constitutional descriptorsa

NC 0.2722 13.465 NC 0.4401 28.297 NAB 0.1456 6.184
NA 0.2696 13.286 NA 0.4343 27.643 NSB 0.0685 2.6465
NSB 0.2585 12.547 MW 0.4208 26.155 NBR 0.0615 2.358
MW 0.2571 12.461 GAP 0.4060 24.602
NH 0.2454 11.710 NH 0.3872 22.744
Topological descriptorsb

W 0.3384 18.414 W 0.4980 35.710 2BICA 0.0710 2.7534
3k 0.3206 16.989 3k 0.4826 33.582 2ICA 0.0699 2.7072
2k 0.3083 16.045 2k 0.4742 32.467 0ICA 0.0652 2.5092
Oj 0.2962 15.152 1k 0.4509 29.564 0IC 0.0558 2.128
1k 0.2902 14.717 0IC 0.4440 28.744
Geometrical descriptorsc

MSA 0.2576 12.492 MSA 0.4063 24.639 S1 0.0392 1.4691
S2 0.2563 12.409 S2 0.3714 31.266
S1 0.2075 9.423 S1 0.3354 18.169
S3 0.1549 6.599 S3 0.2892 14.644
Electrostatic descriptorsd

EWNSA-1 0.4408 28.379 EWNSA-1 0.4780 32.959 PC’N 0.1158 4.714
EWNSA-2 0.4210 26.173 EWNSA-2 0.4468 29.077 EDPSA-1 0.1147 4.665
EPNSA-2 0.3988 23.884 EPNSA-2 0.4234 26.433 EPPSA-1 0.0829 3.256
EPNSA-1 0.3654 20.728 EPNSA-1 0.4110 25.123 PCH 0.0747 2.907
EFNSA-2 0.3292 17.669 EFNSA-2 0.3758 21.671 EFNSA-2 0.0721 2.799
Quantum chemical descriptorse

E0ee(N) 0.3550 19.811 E0ee(N) 0.4580 30.424 Eex(HN) 0.3977 23.772
QWNSA-1 0.3403 18.568 QWNSA-1 0.4564 30.221 Er(HN) 0.3298 17.718
QWNSA-2 0.3309 17.799 QWNSA-2 0.4551 30.071 PN 0.3032 15.667
QPNSA-2 0.2873 14.510 QPNSA-2 0.4383 28.089 Enn(HN) 0.2897 14.683
QTMSA 0.2838 14.265 QTMSA 0.4376 28.009 Ett(HN) 0.2868 14.480

a NC, number of C atoms; NA, number of atoms; NSB, number of single bonds; MW, molecular weight;
NH, number of H atoms; GAP, gravitational index (all pairs); NAB, number of aromatic bonds; NBR,
number of benzene rings
b W, Wiener index; 3k, Kier shape index (order 3); 2k, Kier shape index (order 2); Oj , Kier flexibility
index; 1k, Kier shape index (order 1); 0IC, complementarity information content (order 0); 2BICA,
average bonding information content (order 2); 2ICA, average complementarity information content
(order 2); 0ICA, average bonding information content (order 0); 0IC, bonding information content
(order 0)
c MSA, molecular surface area; S1, XY shadow; S2, YZ shadow; S3, ZX shadow
dE WNSA-1, weighted EPNSA-1 (Zefirov); EWNSA-2, weighted EPNSA-2 (Zefirov); EPNSA-2, total
charge weighted EPNSA-1 (Zefirov); EPNSA-1, partial negative surface area (Zefirov); EFNSA-2,
fractional EPNSA-2 (Zefirov); PC’N, minimum partial charge for an N atom; EDPSA-1, difference in
EPPSA-1 and EPNSA-1 (Zefirov); EPPSA-1, partial positive surface area (Zefirov); PCH, maximum
partial charge for an H atom
e E0ee(N), minimum e–e repulsion for an N atom; QWNSA-1, weighted QPNSA-1 (semi MO); QWNSA-
2, weighted QPNSA-2 (semi MO); QPNSA-2, total charge weighted QPNSA-1 (semi MO); QPNSA-1,
partial negative surface area (semi MO); QTMSA, total molecular surface area (semi MO); Eex(HN),
maximum exchange energy for an H–N bond; Er(HN), maximum resonance energy for an H–N bond;
PN, average bonding order for an N atom; Enn(HN), maximum n–n repulsion for an H–N bond;
Ett(HN), maximum total interaction for an H–N bond
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compounds from each subset determined on the basis of
the protonated nitrogen. For the selectivity a1a/a1b and
a1a/a1d, compounds: 2, 5, 7, 10, 18, 19, 24, 28, 32 and 36
have been chosen for test sets, while for the selectivity
a1b/a1d, compounds 3, 6, 11, 20, 25, 26, 31, 35 and 36
were used.

The following equations were obtained:

� loga1a=a1b¼ 3:568þ 0:51213k� 0:3341Eex CNð Þ
�11:767 E0r1� eþ 0:4394 EHOMO�1

n¼ 28; r2¼ 0:6827; F¼ 12:37; S2¼ 0:5054
� �

for selectivity a1a=a1b ð1Þ

� loga1a=a1d¼ 83:839� 0:0273 E0e� n Nð Þ
þ 0:3778 Ett HNð Þ � 14:864 QRNCG� 0:0152 HDSA� 1

� 0:7631 E0st Cð Þ n¼ 28; r2¼ 0:8476; F¼ 24:47;
�

S2¼ 0:1998Þ for selectivity a1a=a1d ð2Þ

� loga1b=a1d¼ 63:214� 0:420 Est Cð Þþ4:199 Ee� e Hð Þ
þ 20:59 0BICþ9:703 Er1� e Cð Þ � 0:7029 Eex HNð Þ
n¼ 29; r2¼ 0:7493;F¼ 13:75; S2¼ 0:2272
� �

for selectivity a1b=a1d ð3Þ
The correlation graphics of training and test sets

showing experimental versus predicted selectivity a1a/a1b,
a1a/a1d and a1b/a1d, respectively, are shown in Fig. 2.

As can be observed, for all the equations the param-
eters correlating best with bioactivity belong to the group
of electrostatic and quantum chemical descriptors, which
is in accordance with previous works studying QSAR of
a1 adrenergic antagonists. [14]

The intercorrelations of descriptors involved in
Eqs. (1), (2) and (3) are presented in Table 2. The results
of MLR analysis in Eqs. (1), (2) and (3) with values of the
t-test, which reflects the significance of the parameter
within a particular model, are shown in Table 3.

Orthogonalization of the descriptors was performed
to demonstrate the differences between the use of
nonorthogonal and orthogonal descriptors in the devel-
opment of a QSAR model. As an example, the data of
selectivity a1a/a1d were used for the estimation. Heuristic
optimization was applied to generate the ten best param-
eters used for regression models. The statistical param-
eters r2, S2 and F-test were used for the evaluation of the
quality of the models obtained. Comparison of the
regression equations derived from nonorthogonal and
from orthogonal descriptors is shown in Tables 4 and 5. It
is known that orthogonalization of the descriptors does
not alter the values of the correlation coefficients (r2),
standard deviations (s2) and F values, [26] which is also
shown in Table 5. From data presented in Table 4 it could
be concluded that introduction of a new descriptor to
nonorthogonal models introduces fluctuation of the coef-
ficients in the regression equations, while the correspond-
ing coefficients in orthogonal models remain constant.

In Table 6 we show the relative standard deviations of
regression coefficients. It can be observed that, in the case
of orthogonalized descriptors, at each successive step of
regression introduction of a new descriptor decreases the
relative standard deviation of all the descriptors already
used. This is generally not the case with the relative
standard deviation of regression coefficients in the
nonorthogonalized model. For example, the relative
standard deviation for D1 in one parameter regression
model equals RSDD1=�0.4102, in four-parameter regres-
sion RSDD1=19.3456 and in ten-parameter regression
RSDD1=�0.3748, while the standard deviations for d1 are
decreased by introducing each new descriptor into the
model (in one-parameter regression RSDd1=�0.4102, in
ten-parameter regression RSDd1=�0.1383).

Therefore, the advantages of orthogonalized MLR
justify the use of the proposed method to build the QSAR
equations, as also shown in previous work. [27]

A pharmacophore for antagonists at the a1 adrenore-
ceptors has been reported previously. [28] The resulting
pharmacophore had three features including an aromatic
region, a basic nitrogen atom and a semipolar region or a
lipophilic area. This early study did not consider specific
requirements for a1 AR subtypes.

Bremner et al. have developed pharmacophore models
for a1a and a1b subtypes using the Apex-3D software of
MSI and these models were the first subtype-specific a1
pharmacophores reported. [29] The only differences
between the two subtypes were the distance between the
aromatic rings and the amine function. This distance was
shorter for the a1a subtype. In their next study, the
structural features of the new selective antagonists in-
cluded were investigated by the same authors. [7]
Pharmacophores for selective antagonists at the a1a and
a1b adrenoreceptor sites were developed together with a
preliminary antagonist pharmacophore for the a1d adre-
noreceptor. These pharmacophores were found to be
useful for designing ligands based on the aporphine
skeleton. Pharmacological a1 adrenergic subtype binding
affinities were modeled by Menziani et al. [13] and
satisfactory correlations of ad hoc defined size and shape
descriptors with pharmacological data of all three sub-
types indicated the strict requirements for shape comple-
mentarity between the ligand and the receptor subtypes.

The next step in our work was to superimpose the most
selective and most active compounds fitted by the criteria
of protonated nitrogen atom and centers of aromatic and
semipolar regions previously constructed in the SPAR-
TAN program. Three supermolecules were obtained for
a1a, a1b and a1d subtypes (Fig. 3). All compounds were
superimposed on abanoquile, a component chosen as
reference because of its high activity for all three
subtypes. The a1a supermolecule (subset 1) consisted of
the following compounds: 1, 3, 9 (compounds 10, 11 and
12, being very similar to compound 9, were not super-
imposed), 15, 16, 26, 27, 33 and 36, while the super-
molecule for a1b (subset 2) consisted of compounds 2, 3,
4, 17 and 23 and the supermolecule for a1d subtype
(subset3) consisted of compounds 3, 18, 19 and 25.
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Widely used algorithms for calculating the molecular and
accessible surfaces developed by Connolly [22, 23, 24]
were used to compute the following parameters: surface
areas, surface volumes, contact areas, reactant areas and
total areas. The fact that these descriptors were highly
intercorrelated prompted us to choose only the correlation
of surface areas with selectivity of a1 adrenergic antag-

onists for further consideration and the following regres-
sion coefficients were obtained:

– For a1a/a1b selectivity: (compounds of subset 1 (and
compounds 10, 11 and 12) and subset 2): (n=16),
r2=0.4261, F=14.425, S2=0.4201.

Fig. 2 Correlations between
experimental and calculated se-
lectivity for the training and
test sets: a a1a/a1b; b a1a/a1d; c
a1b/a1d. For selectivity a1a/a1b
and a1a/a1d, compounds of test
sets are: 2, 5, 7, 10, 18, 19, 24,
28, 32 and 36. For selectivity
a1b/a1d, compounds of test set
are: 3, 6, 11, 20, 25, 26, 31, 35
and 36. Correlation coefficients
between experimental and cal-
culated selectivity for test sets
are: r=0.6372 (n=10), r=0.8363
(n=10) and r=0.7317 (n=9), for
a1a/a1b, a1a/a1d and a1b/a1d, re-
spectively
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Table 2 Correlation matrices for descriptors used in Eqs. (1–3)

Eq. (1)a

3k Eex(CN) E0r1-e EHOMO-1
3k 1.0000
Eex(CN) �0.0746 1.0000
E0r1-e �0.2230 0.0321 1.0000
EHOMO-1 �0.5078 0.0456 0.4864 1.0000

Eq. (2)b

E0e-n(N) Ett(HN) QRNCG HDSA-1 E0st (C)
E0e-n(N) 1.0000
Ett(HN) 0.0702 1.0000
QRNCG 0.2570 �0.0084 1.0000
HDSA-1 0.0091 �0.3988 0.1982 1.0000
E0st (C) 0.3934 0.3182 �0.1017 �0.7062 1.0000

Eq. (3)c

Est(N) Ee-e(H) 0BIC Er1-e(C) Eex(HN)
Est(C) 1.0000
Ee-e(H) 0.3787 1.0000
0BIC 0.3547 �0.1152 1.0000
Er1-e(C) 0.0581 0.1543 �0.2266 1.0000
Eex(HN) 0.4246 �0.1608 �0.0401 �0.0524 1.0000

a 3k, Kier shape index (order 3); Eex(CN), maximum exchange energy for a C–N bond; E0r1-e, minimum 1-electron reactivity index for a C
atom; EHOMO-1, HOMO-1 energy
b E0e-n(N), minimum e–n attraction for an N atom; Ett(HN), minimum total interaction for an H–N bond; QRNCG, relative negative charge
(semi MO); EHDSA-1, HA dependent HDSA-1 (Zefirov); E0st (C), minimum atomic state energy for a C atom
c Est(C), maximum atomic state energy for a C atom; Ee-e(H), maximum e–e repulsion for an H atom; 0BIC, average bonding information
content; Er1-e(C), maximum 1-electron reactivity index for a C atom; Eex(HN), maximum exchange energy for an H–N bond

Table 3 t-values of regression coefficients in QSAR models

Eq. (1) Eq. (2) Eq. (3)

Descriptor t-test Descriptor t-test Descriptor t-test

3k 5.8402 E0e-n(N) �3.1279 Est(N) �4.6295
Eex(CN) �3.2978 Ett(HN) 2.3317 Ee-e(H) 4.2851
E0r1-e �3.7646 QRNCG �2.8135 0BIC 5.5096
EHOMO-1 2.2153 HDSA-1 �4.5009 Er1-e(C) 4.0303

E0st (C) �5.0596 Eex(HN) �2.0488

Table 4 Regression coefficients in QSAR models with regard to selectivity a1a/a1d for nonorthogonal (Di) and orthogonal descriptors (di)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

�11.0831
�0.4468 �1.1409
95.7293 �0.3830 �2.8102
0.0266 44.4508 �0.2749 �4.0610

�31.8461 0.0291 27.0546 �0.2170 �5.0228
5.8987 �35.9313 0.0316 38.7218 �0.1909 �8.1285

20.9049 5.4769 �37.0707 0.0272 46.1227 �0.2124 �8.7759
�0.6626 11.1993 7.2469 �32.0819 0.0376 55.8052 �0.1188 �8.4427
�2.2859 �0.6156 �27.2440 9.2984 �39.5124 0.0399 91.0995 �0.1081 �8.2796

�34.0906 �2.0972 �0.5701 �25.531 10.3556 �67.4058 0.0397 101.0103 �0.1272 �8.1792

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

�11.0831
�11.0831 �0.4468
�11.0831 �0.4468 95.7293
�11.0831 �0.4468 95.7293 0.0266
�11.0831 �0.4468 95.7293 0.0266 �31.846
�11.0831 �0.4468 95.7293 0.0266 �31.846 5.8986
�11.0831 �0.4468 95.7293 0.0266 �31.846 5.8986 20.9049
�11.0831 �0.4468 95.7293 0.0266 �31.846 5.8986 20.9049 �0.6626
�11.0831 �0.4468 95.7293 0.0266 �31.846 5.8986 20.9049 �0.6626 �2.2859
�11.0831 �0.4468 95.7293 0.0266 �31.846 5.8986 20.9049 �0.6626 �2.2859 �34.0906
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– For a1a/a1d selectivity: (compounds of subset 1 (and
compounds 10, 11 and 12) and subsets 3): (n=15),
r2=0.6408, F=23.19, S2=0.3680.

For a1b/a1d selectivity (compounds of subset 2 and
subset 3, n=8) the correlations with these descriptors were
not found to be significant. (r2=0.1002, F=13.425,
S2=0.3201). The results suggest that the descriptors

Table 5 Statistical parameters in QSAR models with regard to
selectivity a1a/a1d for nonorthogonal (Di) and orthogonal descrip-
tors (di)

Descriptor Constant r2 s2 F

(i) Nonorthogonal model
D1 0.2185 0.1417 1.0122 0.1178
D1, D2 1.7457 0.4837 0.7962 0.4542
D1, D2, D3 �0.4029 0.5546 0.7503 0.5153
D1, D2, ..., D4 �8.0116 0.6008 0.7210 0.5524
D1, D2, ..., D5 22.2116 0.6129 0.7209 0.5525
D1, D2, ..., D6 13.8757 0.6309 0.7153 0.5595
D1, D2, ..., D7 16.6097 0.6941 0.6619 0.6227
D1, D2, ..., D8 40.7898 0.7937 0.5529 0.7368
D1, D2, ..., D9 49.5993 0.9075 0.3767 0.8778
D1, D2, ..., D10 70.5264 0.9268 0.3412 0.8997
(ii) Orthogonal model
d1 0.2185 0.1417 1.0122 0.1178
d1, d2 0.2185 0.4837 0.7962 0.4542
d1, d2, d3 0.2185 0.5546 0.7503 0.5153
d1, d2, ..., d4 0.2185 0.6008 0.7210 0.5524
d1, d2, ..., d5 0.2185 0.6129 0.7209 0.5525
d1, d2, ..., d6 0.2185 0.6309 0.7153 0.5595
d1, d2, ..., d7 0.2185 0.6941 0.6619 0.6227
d1, d2, ..., d8 0.2185 0.7937 0.5529 0.7368
d1, d2, ..., d9 0.2185 0.9075 0.3767 0.8778
d1, d2, ..., d10 0.2185 0.9268 0.3412 0.8997

Table 6 Relative standard deviations of regression coefficients in nonorthogonal models (i) and orthogonal models (ii)

(i) Nonorthogonal model

RSDD1 RSDD2 RSDD3 RSDD4 RSDD5 RSDD6 RSDD7 RSDD8 RSDD9 >RSDD10 RSDc

�0.4102 1.6176
�0.7483 3.6189 0.2416
0.4330 �1.3698 �4.8836 �2.4955

19.3456 1.0678 �0.3783 �0.9495 �0.5009
�1.0406 0.4762 1.8678 �0.5482 �0.7910 1.3694
0.8138 �0.8821 0.3804 1.3178 �0.6285 �0.5761 2.2291
0.4017 0.8117 �0.7913 0.4765 1.0258 �0.5239 �0.4947 1.7246

�0.2673 0.6236 0.5165 �0.7649 0.2972 0.7097 �0.8103 �0.4269 0.6076
�0.1703 �0.1964 �0.3045 0.2768 �0.4243 0.1912 0.3034 �0.6074 �0.2985 0.3418
�0.3748 �0.1715 �0.1945 �0.2954 0.2284 �0.2735 0.1739 0.2506 �0.4709 �0.2737 0.2445

(ii) Orthogonal model

RSDd1 RSDd2 RSDd3 RSDd4 RSDd5 RSDd6 RSDd7 RSDd8 RSDd9 RSDd10 RSDc

�0.4102 1.6176
�0.3226 �0.2077 1.2723
0.3040 �0.1957 0.4298 1.1989

�0.2922 �0.1881 0.4131 0.5120 1.1522
�0.2921 �0.1880 0.4130 0.5119 0.9976 1.1521
�0.2899 �0.1866 0.4098 0.5079 �0.9897 0.8138 1.1431
0.2682 �0.1648 0.3792 0.4700 �0.9159 0.7531 0.4017 1.0578

�0.2241 �0.1442 0.3167 0.3926 �0.7650 0.6291 0.3355 �0.2673 0.8835
�0.1532 �0.0982 0.2158 0.2688 �0.5212 0.4286 0.2286 �0.1821 �0.1703 0.6019
�0.1383 �0.0890 0.1955 0.2423 �0.4722 0.3882 0.2071 �0.1649 �0.1543 �0.3747 0.5453

Fig. 3 Frontal and side views of supermolecules obtained by
superimposing the most selective and active compounds for the
following subtypes. a a1a adrenenoreceptor subtype (compounds 1,
3, 9, 15, 16, 26, 27, 33 and 36). The resultant surface area and
volume calculated by the Connolly algorithm are 992.55 �2 and
1,615.94 �3. b a1B adrenenoreceptor subtype (compounds 2, 3, 4,
17 and 23). The resultant surface area and volume calculated by the
Connolly algorithm 833.86 �2 and 1,263.01 �3. c a1d adrenenore-
ceptor subtype (compounds 3, 18, 19 and 25). The resultant surface
area and volume calculated by the Connolly algorithm are
708.35 �2 and 1,068.48 �3
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obtained by the Connolly algorithm could give useful
information in the estimation of the a1a/a1b and a1a/a1d
selectivity of the compounds investigated.

The compounds of subset 1, subset 2 and subset 3 were
further investigated and the correlation of molecular
descriptors with selectivity of the compounds present in
subsets is given in Table 7.

It is interesting to note that the molecular descriptors in
one-parameter correlations are different for the different
subtype selectivity, suggesting a different mechanism for
the receptor–antagonist interaction for a1a, a1b and a1d
subtypes. The theoretical indices involved in the ratio-
nalization of various a1 AR-binding selectivity indicate
that electrostatic and quantum chemical interactions are
crucially important for ligand–receptor complexes.

Menziani et al. [13] have developed two classes of
parameters in their development of QSAR models for
native (a1A and a1B) and cloned (a1a, a1b and a1d)
adrenoreceptor subtypes. A large number of global and
fragmental descriptors were generated for each com-
pound. The ad hoc defined size and shape descriptors
were added. The results presented in their work showed
that the heuristic statistical method implemented in
CODESSA is a valuable tool for selecting the theoretical
molecular descriptors from a large pool to give powerful
predictive and interpretative QSAR models. It was also
shown that the requirements for shape complementarity

between the ligand and the receptor are encoded by ad
hoc defined size and shape descriptors and these indexes
are very useful in the rationalization of pharmacological
data to express a predominance of specific receptor
subtypes. Good predictive QSAR models for adrenergic
activities of compounds related to prazosin with a
restricted pool of informative theoretical descriptors were
obtained by Cocchi et al., [14] in which both congeneric
and noncongeneric molecular series were modeled satis-
factorily. Theoretical descriptors allowed well-defined
physico-chemical information and were considered in the
rationalization of the structural heterogeneity of the
molecules examined as differences in the complementar-
ity intermolecular interactions of the studied ligands
towards receptor.

Conclusion

A comprehensive set of 38 a1 AR antagonists has been
used to determine quantitative relationships between their
chemical structure and selectivity for three subtypes of a1
adrenoreceptors. The molecular descriptors chosen by a
heuristic method indicated the different structural features
required for binding of antagonists for a1a, a1b and a1d
subtypes of the adrenoreceptor. Use of orthogonalization
of the descriptors provided the stability of coefficients of

Table 7 Selection of best descriptors from each group of descriptors according to correlation coefficients for one-parameter correlations
with regard to selectivity on a1a/a1b, a1a/a1d and a1b/a1d adrenoreceptor subtypes of subsets 1, 2 and 3

Subset 1 and 2 selectivity a1a/a1b Subset 1 and 3 selectivity a1a/a1d Subset 2 and 3 selectivity a1b/a1d

r2 F r2 F r2 F

Constitutional descriptorsa

MW 0.3374 8.1475 NC 0.5633 20.6357 NAR 0.5815 9.7279
RNR 0.3041 6.9912 NA 0.5508 19.6217 RNSB 0.4094 4.8517
NA 0.2933 6.6409 MW 0.5373 18.5801 NBR 0.3487 3.7471
Topological descriptorsb

3Sw 0.5781 21.9199 2k 0.6235 26.4939 1ICA 0.1278 1.0258
F 0.4406 12.6031 W 0.5702 21.2231 2BICA 0.1255 1.0048
W 0.3706 9.4219 1c 0.5692 21.1417
Geometrical descriptorsc

MSA 0.3575 8.9035 MSA 0.6097 24.9931 IA 0.2462 2.2867
IC 0.3502 8.6229 MV 0.5692 21.1424 S2 0.1929 1.6733
MV 0.3176 7.4462 S3 0.5355 18.4458
Electrostatic descriptorsd

EWNSA-1 0.5995 23.9525 ETMSA 0.5839 22.4478 PCH 0.2626 2.4922
EPNSA-1 0.5865 22.6914 EWNSA-1 0.5372 18.5716 EFNSA-3 0.2433 2.2510
EFNSA-2 0.4672 14.0297 PCN 0.4946 15.6551 PC0N 0.2240 2.0206
Quantum chemical descriptorse

QWNSA-1 0.4788 14.6960 RI(C) 0.6055 24.5575 E0st(H) 0.7718 23.6707
QPNSA-1 0.4353 12.3342 QTMSA 0.5839 22.4478 FHACA 0.7145 17.5211
Ev(N) 0.4083 11.0399 Etot2-c 0.5702 21.2302 Eex(HN) 0.7070 16.8868
Eee(HN) 0.3880 10.1429 Eex(HN) 0.5498 19.5393 Enn(HN) 0.6656 13.9352

Nel 0.5461 19.2492 HACA 0.6621 13.7132

a RNR, relative number of rings; NAR, number of aromatic bonds; RNSB, relative number of single bonds; see footnote a of Table 1
b 3Sw, Wiener shape index (order 3); 1c, Randic index (order 1); 1ICA, average information content (order 1); see footnote b of Table 1
c IC, moment of inertia C; MV, molecular volume; IA, moment of inertia A; see footnote c of Table 1
d ETMSA, total molecular surface area (Zefirov); PCN, maximum partial charge for an N atom; EFNSA-3, fractional atomic charge
weighted EPNSA-1 (Zefirov); see footnote d of Table 1
e Ev(N), maximum valency of an N atom; RI(C), average electrophilic reaction index for an C atom; Etot2-c, total molecular 2-center
resonance energy; Eee(HN), maximum e–e repulsion for an H–N bond; Nel, number of occupied electronic levels; E0st(H), minimum
atomic state energy for an H atom; FHACA, fractional HACA; HACA, hydrogen acceptor charged surface area; see footnote e of Table 1
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the regression models as well as a decrease in the relative
standard deviations of regression models when introduc-
ing more descriptors into the model. The computation of
ad hoc shape descriptors confirmed the usefulness of
these descriptors in the rationalization of the mechanism
of the adrenergic activity with respect to selectivity for
a1a, a1b, and a1d subtypes.
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